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FUELCON is an expert system for optimized refueling design in nuclear engineering.

This task is crucial for keeping down operati
safety. FUELCON proposes sets of alterna

ng costs at a plant without compromising
tive configurations of allocation of fuel

assemblies that are each positioned in the planar grid of a hotizontal section of a
reactor core. Results are simulated, and an expert user can also use FUELCON to

revise rulesets and improve on his or her heuristics.

The successful completion of

FUELCON led this research team into undertaking a panoply of sequel projects, of
which we provide a meta-architectural comparative formal discussion.

In this paper, we demonstrat¢ a nove

| adaptive technique that learns the optimal

allocation heuristic for the various cores. The algorithm is a hybrid of a fine-grained
neural network and symbolic computation components. This hybrid architecture is
sensitive enough to learn the particular characteristics of the ‘in-core foel management

problem’

automatically revise heuristics, thus improving upon

expert. © 1997 Elsevier Science Limited.

1 INTRODUCTION

Nuclear engineering is an industrially significant domain,'
prominent in the broader area of power generation and
supply. Our FUELCON project, started in the mid-1980s,
has thus far yielded an expert system that has inaugurated a
paradigm among computer tools for its specific task. This
task is to provide a good fuel reload configuration for when
a reactor is shut down periodically for refueling, Reload
design is also called, more broadly, in-core fuel manage-
ment. Because of the way it affects the effectiveness of fuel
utilization—and how long the reactor could operate
effectively before it has to be shut down again—reload
design has a major incidence on costs at nuclear power
plants. ‘‘Individuals responsible for fuel management are
among the most skilled in the nuclear industry and their
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at hand, and is powerful enough to use this information fully to

those provided by a human

time is always at a premium. It is therefore not surprising
that AI techniques, both expert systems and pattern
recognition, are being applied to assist with refue:lings."2
(p. 40).

FUELCON is already a working system that can be
applied indus.trially.3‘l3 During the last two or three years,
we have been trying to upgrade the reasoning capabilities of
the tool. This has led to an array of sequel projects; we
report on one of these in this paper. We are going to
focus, here, on the contribution of neural computation, on
top of symbolic manipulation as carried out by FUELCON,
for the purposes of not only producing good reload designs
but also improving upon the human expert’s heuristics that
guide automated design at the symbolic computation level.

Indeed, in FUELCON, heuristic domain knowledge is
applied to the generation of hundreds of alternative fuel
allocation patterns per session, this plurality being itself a
peculiar asset. From simulation results downstream (which
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are done by using a simulator called NOXER), the very few
best solutions stand out, thus creating a shift from just local
optima as achieved by other methods of computer-assisted
reload design to what FUELCON enables us to achieve:
namely, global optimality in the solution space as per a
given policy of search, the latter being embodied in the
ruleset loaded during the given session.

Note that heuristics are used. Therefore, when looking for
optimality, it is understood that the optimum is with respect
to the space of solutions as delimited by the heuristics,
which embody a strategy. How well it performs is relative
to the best result published in the domain literature, or from
the record of previous sessions. This way, the tool is also
very important for evaluating strategies, and for detecting
and exploring the potential of new or underexplored
strategies.

Each one of the allocation patterns (ie fuel configurations)
thus generated prescribes how to allocate units of fuel, of
different kinds, inside the square cases of the (geometrically
and symmetrically schematized) core of a particular
nuclear reactor. Which relevant criteria of fuel allocation
are selected when solving the problem at hand depends
on the type of reactor, the features of the individual
plant, its current state and the solver’s expertise. In
turn, the cumulated knowledge body of the speciality,
as in its operational form of prescribing problem-
solving steps, reflects—at a deeper level-—models of
reactor physics, as well as of the economics of nuclear
plant operation.

One crucial aspect of in-core fuel management is that fuel
allocation, and the circumstances motivating the details of
selection, cannot be fully predefined before the moment
comes for shutting down a plant and refueling it. Even
though rough forecasts are possible, they are not robust
enough in terms of post-optimality: unforeseen dis-
crepancies with respect to expectations are all too likely
to undermine the convenience and even the very safety of
any configuration resulting from pre-shutdown guesses. It
is only at shutdown that the reliable design of the new
allocation is possible.

We have seen that, in FUELCON, a ruleset is applied to
generate families of good fuel configurations in the reactor
core. A practitioner may just rely on FUELCON to
propose solutions from which s/he can pick the best
according to the visualized results of the simulation, The
domain expert, however, can afford to be more ambitious:
FUELCON is a testbench for the human expert heuristics.
The expert is challenged to significantly improve not
just the configurations but his or her own heuristic rules
as well. The results of one given iteration of the expert
system are simulated by a separate component, the
examination of whose results in turn prompts the human
expert to manually improve upon the ruleset that was
previously formulated, also manually, by the same or
another expert.

The main contribution of neural revision of the ruleset—
the main sequel project we describe in this paper—consists

' START

FUELCON symbolic generator of configurations

. DATABASE.

configurations

Simulator
(NOXER)

+ visualization

OR

Ruleset-revision: EXIT
manual or neural

Fig. 1. Phases in the integrated operation loop of using the tool.

of enabling this ‘nobler’ cognitive task, of improving upon
the previous ruleset, to be automated. The initial formula-
tion of the ruleset is still to be provided by the expert; what
follows, in both the traditional FUELCON and this sequel
project, is an operation loop throughout various steps (and
the respective software components): see Fig. 1. We shall
show the outline of how to automate ruleset revision; in a
sense, this success is tantamount to virtually achieving a full
automation of the discovery process by which heuristics are
adapted and refined in the loop. We added the ‘missing link’
by replacing, in the architecture, a manual step with an
automated one. Neural learning algorithms tune the rules
to yield better configurations, based on performance in pre-
vious iterations as assessed in the simulation phase down-
stream of the generator of fuel configurations. For the
purposes of the neural learning phase, we designed a com-
ponent transforming the rules into a neural network using a
particular technique embodied in the NIL language and
translation schema'* (also called NEL), defined by one of
the present authors. The general use of NIL is for transform-
ing symbolic algorithms and structures-—and, for our pre-
sent purposes, rulesets—into neural networks. We use
this schema to obtain translation from symbolic rules to
analogue network. Learning then takes place on the
neural-network equivalent to the rules, and revision is per-
formed on this representation.

Not only is the approach novel for the domain of applica-
tion: it is not trivial from the viewpoint of artificial neural
networks (ANN) and integrated symbolic/neural hybrid
architectures. In terms of the classification of hybrids as
proposed by Goonatilake and Khebbal,'? it is a function-
replacing hybrid that we have in the extended FUELCON
architecture (the other two categories being infer-
communicating hybrids and polymorphic hybrids). In this
paper, we are also going to define a semi-formal framework
for discussing pools of heterogeneous components as
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integrated into alternative, possibly hybrid architectures.
This approach, we believe, may also prove useful for
engineering computing and hybrid system design.

In this paper, we first discuss reactor and fuel manage-
ment, then describe the version of FUELCON that only
carries out symbolic manipulation (conventional Al, non-
neural computation). The architectural options of the sequel
projects are then discussed in a formal notation, and then we
present the neural revision of the ruleset. Finally, we briefly
outline sequel projects.

2 THE PROBLEM: REFUEL DESIGN

The domain of the project described, FUELCON, is in-core
fitel management,'® at nuclear power plants of the conven-
tional kind, i.e. pressurized water reactors (PWR). Another
paper'” presents a review of the domain and of the problem.
We recapitulate very briefly here. Nuclear fuel comes in
assemblies of rods. Single assemblies are inserted in a
grid, this being a planar horizontal section of the reactor
core. In practice, it is usual to consider just a slice of the
grid, in one-eighth symmetry. For example, let it be this
array of positions:

discarded after three cycles, or if a defect is found.
Because of the cost of fuel and of transportation, it is
important to make efficient use of the available pool of
fuel assemblies.

The task of the human practitioner in the role of the in-
core fuel manager, and of tools, such as FUELCON,
that are intended to assist him or her, is to determine
a safe, efficient arrangement of the available fuel
assemblies in the grid. This arrangement is called a
fuel pattern, a fuel configuration or a reload design.
Owing to forecasts not being robust (i.e., exceeding
sensitivity with respect to postoptimality), only at EOC
is it possible to obtain the exact problem that has to be
solved and then to design the new configuration in
detail. Whereas some tools—either from operations
research, or expert systems—try to improve on a given
solution by switching places in the grid (i.e., by shuffling)
and then propose one satisfactory solution (which is the
case of an expert system prototype of IntelliCorp),'#~20
the FUELCON expert system generates a multitude of
solutions from scratch, according to a given strategy that
is embodied in heuristic rules, that can be tuned to improve
performance.

3 FUELCON: THE EXPERT SYSTEM

posll
pos2l pos22
pos3l pos32  pos33 3.1 The process of generating configurations
posd posd2 pos43 posdd
posg} p‘”:g% P"Sgg posgj f’"sgg 6 There is a standard, general solution method resorted to by
pos pos pos pos pos pos human fuel managers to solve the in-core fuel management
posTl posT2 pos73 posT4 posTs ) > .
pos8l pos82  pos83 problem, which in turn can be conceived as per the
following metacode:
sorted pool configuration
fISORT? Y ——mm e >  CCINSERT?' —————mm—oee—— > ¢ *EVALUATE’’
WHERE :
f¢SORT’* 1S: sort(WHAT: ALL(fuel-assemblies); IN: fuel-pool);

¢ *INSERT'’ IS:
¢ YEVALUATE'’ IS:

Position pos11 is the centre of the core. Positions pos22,
pes33, posdd, pos55, pos66 are the core’s diagonal. In this
example, positions pos8l, pos82, pos83, posT4, pos66 are
the periphery of the core. The first column in the array is the
core’s main axis.

Reactors are operated in cycles of about one year at
a time, and are then (at EOC, ie., end of cycle) shut
down for inspection and refueling. During operation,
fuel becomes gradually depleted up to a certain
degree reached at EOC, depending on the fuel
assembly’s position in the grid and on the assembly’s
record of previous use (fresh fuel, once burnt or twice
burnt, according to the number of previous cycles of
utilization being zero, one, or two). A fuel assembly is

insert (WHAT: fuel—-assembly ; IN: ALL(core-positions));
evaluate(configuration).

Fuel is sorted for reload according to some physical
feature. Then a candidate conliguration is constructed by
inserting (on paper) one fuel assembly per core position
until the core is filled. (One practical way to do that may
be to take a ready-made solution out of the plant’s record, or
of one’s experience, or of some real-case study published in
the specialized literature, even though such a solution is
unlikely to be admissible for the problem at hand at this
plant at this moment in time.) This yields a candidate
configuration that has to undergo evaluation. This, in turn,
is achieved by simulating it by means of simulation soft-
ware; i.e., by simulating how the core reactor would behave
during the next power production period were it to be
retoaded as per the configuration at hand: would this involve
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an unacceptably high local power density? If not, then you
have a satisfactory solution. Otherwise, try to modify the
configuration at hand by shuffling; i.e., generate a new con-
figuration by means of a binary (or more complicated)
exchange of assemblies among adjacent (or non-adjacent)
core positions.

Unlike all previous tools for reload design—and unlike
most current tools even now that almost a decade has
elapsed since the FUELCON project started—the
FUELCON expert system does not simply assist the user
in shuffling a configuration that s/he has provided as input
(according to personal experience, or real case studies pub-
lished in the domain literature). Among knowledge-based
tools, that was the way that, e.g., the IntelliCorp tool was
intended to work.

In contrast, FUELCON is not fed an input configuration
but, instead, incorporates a replaceable ruleset, as formu-
lated by a domain expert: the search is carried out, not for
a single optimal solution, but for a set of alternative
allocations (i.e. fuel configurations) grouped into families;
these are typified by the given ruleset that generates them
and which, in turn, embodies heuristics reflecting a given
generic conception. Some heuristics are fairly general; other
rules embody options. For example, to achieve uniform
power distribution and thus maximal fuel depletion, the
following general operational criterion is known (along
with its explanation): “‘If every assembly has the same load-
ing of uranium, then it can be shown theoretically that the
resulting power profile will be cosine shaped. Therefore,
achievement of a uniform power distribution requires that
assemblies with less than the core-wide average fuel loading
be placed at the core center and those with more at the core
periphery.”2 (p. 40).

The given input situation is typified by the given reactor
(whose core has a given geometry) and the time-dependent
given pool of available fuel.

This is how FUELCON generates families of configura-
tions. The expert system has a database, subdivided in parts
that, respectively, contain the structure of the core geometry
of the particular reactor concerned, data on the pool of
available fuel assemblies (which are subdivided by type),
and the partial configurations in the process of being
generated.

The set of configurations is generated concomitantly,
ex nihilo (ie, starting with an empty core), and then
considering one fuel assembly at a time. Given that
particular assembly, in each one of the partial configurations
generated thus far there generally are various alternative
empty positions where that assembly may be placed. In
this way a tree of configurations is developed, level
by level, through partial configurations as intermediate
stages, up to the terminal level at which the core is
completely filled. The search is forward oriented
and breadth-first, and there is no backtracking. Each
leaf in the tree corresponds to one full configuration,
i.e., to a fully loaded core that fully exploits the available
fuel.

The search can be conceptualized as a hierarchy—a
search-tree—and each level in the tree is associated with
a particular fuel assembly (out of the available pool kept in
store); but in particular, for efficiency reasons, this is done
according to a predefined order as per a loading sequence.
The latter is given just as the rules in the ruleset are given:
both the ruleset and the loading sequence are provided by
the domain expert. Yet, basically, it would be easy to auto-
mate the generation of the loading sequence, too: those fuel
assemblies about whose class there are elimination rules are
put ahead in the loading sequence; the more numerous are
the rules that affect the class of the assembly, the earlier the
place has to be of that assembly within the loading
sequence.

On the other hand, this paper discusses, in Section 6,
the basics of automating ruleset revision in a neural
sequel project of FUELCON. The present section
provides a necessary recapitulation of the way FUELCON
is configured without the addition of the neural component,
the latter being the topic of the rest of the paper. For
the purposes of the discussion developed there, let us
consider in particular the way the ruleset is structured in
FUELCON.

3.2 The ruleset of FUELCON and NOXER

The ruleset in FUELCON consists of two different kinds
of rules: elimination rules, which are mandatory and
must apply in all sessions mainly to enforce safety;
and optional rules, which reflect a policy and allow
one to concentrate search in promising regions of the
solution space.” From a different perspective, we can also
say that rules in FUELCON represent two distinct types of
knowledge: generic principles from reactor physics, and
local, specific knowledge suited to accommodate given
situations.

As already mentioned in the Introduction, FUELCON can
assist the practitioner, but is even more useful as a testbench
for the domain expert. A middle ground is that when an
experienced user uses FUELCON, he or she is likely to be
ambitious beyond what is yielded by just running the initial
ruleset. If such a user is experienced enough (in the task, and
in using FUELCON in particular), adjustments to the ruleset
are called for, to try to get a new family of configurations
that includes such a solution that is better that the best one
yielded thus far. Moreover, the expert may wish to test new
heuristics that would, e.g., zoom in on certain promising
leads detected in the outcome of the previous run, or get
denser families, or move the family as a whole into a safer or
more efficient area in the cartesian plane of two parameters
in which the resuits of simulation are visualized. In this
way, manual revisions of the ruleset fit in an operation
loop in using FUELCON when trying to solve the same
given input problem. Each single iteration includes a
generation phase, an evaluation phase, and a ruleset revision
phase: see Fig. 1.

Downstream of the rule-based generator of configurations
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Fig. 2. The ‘cloud’ of solutions moves into a better region after the
ruleset has been revised.

(which is coded in Lisp), the output is fed to NOXER, a
locally developed simulator. The results of NOXER are
both visual and numeric. At each iteration in the loop, the
family of configurations generated is processed by NOXER
and displayed as a ‘cloud’ of solutions (one dot per
configuration) in a cartesian plane as mentioned. In
this plane, there is a ‘window’ of admissibility: it is a
region lying under a horizontal line in the display. Its
‘southwestern’ corner is at the origin of the cootdinates.
In this admissible region, configurations on the right are
more efficient than configurations on the left. The
domain expert may wish to move the ‘cloud’ of solutions
into a ‘northeast’ direction (provided it is under the
safety threshold) in order to get several configurations that
are both safe and very efficient: see Fig. 2. The means to
achieve this are to revise the ruleset appropriately. This is
the step of revision that we have set to automate by means of
a neural component and symbolic-to-neural conversion
schema.

4 SEQUEL PROJECTS:
A META-ARCHITECTURAL DISCUSSION

In Fig. 1, we outlined a loop of how to operate our tool. The
flow is through an architecture of components: the rule-
based generator of fuel configurations, the simulator
(either NOXER, or an alternative) and ruleset revision,
which in turn is to be performed either manually or by
means of a neural component.

The sequel projects we have been developing since the
completion of FUELCON explore alternative paradigms in
order to provide a rich pool of improved components. These
components are either complementary (as shown in Fig. 1)

Find Good Allocation
AND
Generation Simulation
OR OR
Rule-based NOXER Neural Prediction

) ®© ®

FUELCON HRuleset Genetic

(=
@ revision @
A

Human Neural

Fig, 3. Meta-architectural AND/OR tree.

or alternative. An AND/OR tree is an adequate formalism
for discussing the various options: see Fig. 3.

The root of the tree is the global task of solving the in-
core fuel management problem. To carry it out, we
need both the generation of reload configurations and their
simulation. In turn, for the latter we already have the
NOXER program; however, one of our sequel projects
(still in its early stages) aims at providing an alternative,
based on neural networks, that needs to be reliable but far
more time effective.

On the other hand, for the subtree rooted in ‘Generation’
we have results to show for all options. An alternative to
rule-based generation is being explored in a sequel project
based on genetic algorithms: see Section 7. In contrast, the
generation of reload configurations by means of a ruleset
requires the extant FUELCON to be combined with ruleset
revision that in turn is performed either manually or as
neurally automated. It is on the latter option that we are
going to focus in the rest of this paper. Manual revision
also has interesting features: a body of ergonomic knowl-
edge about how to use FUELCON in that way has been
devaloped.3

Now, let us develop a convenient notation to be able to
refer to the various options concisely and precisely. To
define such a notation, we need both the AND/OR tree of
Fig. 3 and the following abstract conceptualization.
Consider the six dashed boxes in Fig, 4. Let these be
components that together constitute a pool from which to
select those components that are to be included in an actual
architecture., Such an architecture is shown in Fig, 3,
where control flow is through components «, § and {, in
that order. Let us express that sequence by means of the
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-—————— -————— 2. a Oc¢ Oe. This is one of the architectures we are
¥ o I B ! investigating by integrating symbolic and neural
1 1 ! 1 computation: actually, it is the architecture, based
i e e = = on reinforcement learning, to which we are going to
devote the bulk of our remaining discussion in this
paper.
r 3. d O e, this being the genetic system that Jun Zhao has
' developed in London as a doctoral project under the
1
|

FUELCON ‘umbrella’: see Section 7.

4. @ O ¢ Of This is a hybrid symbolic/neural architec-
ture that we will not consider yet. It is based on the
distal teacher paradigm of neural computation.

1 1 | 1
1 g 1 Lo i
L : 2 5 THE WAY NEURAL NETWORKS ARE APPLIED
Fig. 4. A general schema of a pool of components for potential Artificial neural networks are a computational tool with the
architectures. ability to adapt to environments and learn from experience.

The networks consist of interconnections of parallel agents;
each agent computes a simple function, but the network as a
whole constitutes a powerful model.?!=2* As opposed to
classical Al techniques, the networks do not require lists
of rules or entail reasoning. Networks are trainable dynami-
cal systems which learn by observing a training set of
input—output pairs, usually by gradient-descent optimiza-
tion techniques (e.g., backpropagation). As for their general
structure, networks are considered as nonparametric statisti-

noncommutative operator ‘concatenation’, symbolized by
O. This way, the actual architecture selected in Fig. 5 (as
opposed to potential ones) is @ O 6 O {.

We apply this to the AND/OR tree of Fig. 3. The only
candidates for concatenation are terminal nodes. Moreover,
not all potential strings in any order are eligible.
Historically, throughout our project, we have been
developing architectures in the following order:

1. Architecture a O e O b, that is to say, the output of cal models that are capable of approximating rather
rule-based FUELCON, is simulated by NOXER, with arbitrary functions.**** Much effort in using them was
manual ruleset revision downstream. If we assume demonstrated in the last decade, in particular in the areas
that separately, somewhere, a constraint is stated on of signal processing, adaptive control, speech and image
the actual order in which components are invoked in recognition and time series prediction.***?
the control flow, then it is legitimate to decouple this Arguably, the most appealing characteristic of neural net-
constraint from the way we select strings of terminals works is that they can generalize—and thus respond well—
from the AND/OR tree. Thus, let us reformulate the not just on the training set, but rather on future behaviour
string in the order the terminals appear in Fig. 3. This that is not observable. Thus, it is important that networks are
yields the concatenated string a O b O e. not being trained to give as perfect a match as possible to

their training set, but only up to some level of precision so as
il tq allow for good gener.alization. There are various tech-
o | B | n1qu<3257 of l}ow to do this well and not overfit the given
1 1 data.?” Failing to allow neural networks such an ability to
R

generalize undermines the very reason and withholds the
benefit of using them, as can be seen in some older, not so
successful, applications reported in the literature. In the
------ present project, we made special efforts to ensure that the
generalization property is adequately possessed by the system.

5.1 Symbolic dynamics in neural processing

The incorporation of symbolic dynamics in neural networks

i may considerably enhance the network performance in

£ 1 ¢ practice. This idea seems to have been put forward by
: several researchers,

Psychologists have long been noting the fact that when a

Fig. 5. An actual architecture, a O § O ¢, selected from the pool of person learns a new task, that person does not start tabula

components as in Fig. 4. rasa by learning to control his or her motor system, to talk,
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and so on, but rather uses all previous components and
routines s/he has learned over the years, with emphasis on
the combination of these as part of finding a solution to a
new problem. Neural networks as a tool for engineering
can also improve in both their running time and the richness
of their behaviour by using a variety of pre-learned
components.

Much advantage can be gained by allowing networks to
use any piece of information available about the problem, or
a way of solving it, for applications that range between fully
structured problems (for which a full symbolic analysis
exists) and those problems, termed ‘random’ by Abu-
Mostafa,?® that depend entirely on training examples.” In
all such cases, the use is recommended of possibly available
intelligent hints, as opposed to learning from scratch which
for practical purposes is clearly inefficient because it ignores
the partial information that may already exist. Exploiting
this source makes for a better and faster adaptive learning
machine.

The use of symbolic hints is becoming crucial and
mandatory when a problem has to be solved under con-
straints. In such cases one is to force some behaviour and
allow for learning and adaptation only under the flexibility
that does not violate the requirements. If such a symbolic
inclusion of mandatory constraints were not available, one
would have to neglect neural learning and allow for the
strict symbolic algorithms.

We will not review here all work done in this field,
but will describe briefly three main methodologies. Abu-
Mostafa®? introduced a methodology of incorporating
hints into networks. His idea is to train the network with
two kinds of examples: the actual example of the training
set, and virtual examples that are artificially made to express
the symbolic hints. Both examples are learned by the same
numerical learning method, such as backpropagation. Abu-
Mostafa expounds his idea as a nice, clean paradigm that he
has applied in the financial domain.

Another line of work concentrates on using neural nets to
‘refine expert knowledge’ or fix rules and heuristics; the
neural learning is limited, so that extracting the refined
rules from the knowledge-based neural networks is still an
available capability. This is the approach adopted by,
among others, Towell and Shavlik. ™

Symbolic dynamics was also suggested to assist networks
in learning complex tasks by introducing the external
modularity of well understood subtasks to the network or
fixing the initial architecture. Classical neural net learning is
used for simple tasks and on small subnetworks, while the
modularity of the system is based on external analysis. This
allows for using previous networks (or modules) in a
bottom-up programming fashion, for incorporating
mandatory constraints on the initial architecture, and for
applying pre-defined hints, The most advanced such scheme
is probably the neural language NIL, described in previous
work by Siegelmann.'* (It has also been referred to by the
name NEL or NIPPL.) We make use of this scheme in our
application.

5.2 The schema of NIL

NIl. is a procedural parallel high level programming
language. It includes all the control flow statements of the
language Pascal, but is richer in its possible types and
expressions. NIL defines a real-time software, or in
particular a reactive software; that is, its input and output
channels are open and thus it communicates constantly with
its environment. NIL, however, is not only a real-time
parallel and easy-to-use programming language. Its main
appeal for us resides in its associated compiler. It long
used to be the case that a compiler of a programming
language was a software that translates the language into
a machine executable code. The NIL compiler is very
different from existing compilers, as its target representation
is a neural network.

Note that the original conception of neural networks is as
a hardware computing architecture, even though they have
come to be simulated on ordinary computers. In contrast to
the latter kind, the network (if thought of as a hardware
model) does not allow for specialized parts of the (‘hard-
ware’) architecture that store commands or handle fixed and
temporary variables; there are no specialized registers or
hardware-based program counters to indicate the command
under current execution. In practice, however, neural net-
works have been simulated on conventional computers,
even using a conventional operating system platform. To
avoid confusion, this must be kept in mind.

The network has a totally homogeneous structure: there is
some number of neurons; at each tick of the clock, all neu-
rons are updated with new values. Thus, a network step
consists of a parallel execution of assignments. In the net-
works resulting from our NIL compiler, the program com-
mands, variables and all software, along with the registers,
counters and other parts of computer hardware, are all trans-
lated into the same structure of neurons in a network.
Although including all pre-known hints or programs, the
target architecture is able to adapt and learn, just like all
other neural architectures,

There are many ways of translating a rule or a program
into a network. Our compiler does not translate into an
optimal network in the sense of its smallest possible size
or minimal structure. On the contrary, the NIL compiler
translates to a network that is not very small but is homo-
geneous in structure, This is done for practical reasons. The
network obtained by the translation scheme is to serve as an
initial architecture for further learning, one that includes
all previous knowledge. If the minimal size network was
chosen, the network would not generalize well to other
properties to be learned later, but rather will demonstrate
overfitting to the initial knowledge. A homogeneous, larger
network, on the other hand, has a structure that enables it to
continue and learn.

Having these properties, NIL is of a solid practical use to
include previously known knowledge. This is in contrast to
Abu-Mostafa’s treatment of hints,” that can be acquired
during the learning process, but for which there is never
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any assurance that they are going to be fully represented and
that subsequent computation would actually adopt them and
adhere to them. When NIL translates mandatory constraints,
they will not be changed during the later training phases, as
opposed to heuristic rules that can be tuned later on. Other
current applications of NIL include an adaptive controller to
roast coffee beans and a tool to improve simulations of
fighter planes.

In our current project, the neural network constitutes a
meta-program that controls the search for good fuel

allocations in a large search space. The use of NIL allows

having an initial architecture that includes the mandatory
rules (in practice, safety rules) that will never be changed,
as well as heuristic rules of search. During the operation, the
network is being changed and the heuristic rules can be
tuned or changed, or even new methods can be learned.
The advanced network that appears after learning from
experience cannot be well described in terms of clear
rules, except for the mandatory rules that are uncom-
promisingly specifiable by the network. This freedom of
having a controller that is not fully described by rules intro-
duces flexibility and a substantial improvement in terms of
performance.

6 NEURAL RULE REVISION

In the previous, entirely symbolic version—a conventional
expert system—of the generator, ie., the FUELCON
component that by executing the ruleset generates a family
of in-core fuel conﬁgurations,3 the mode of use intended for
expert users (as opposed to less ambitious practitioners)
involves a manual stage downstream. In the ruleset,
indeed, a particular search heuristic is embodied in the
optional rules of the ruleset (i.e. the policy, not the safety-
related rules). Once run on the problem at hand, the current
strategy represented as a ruleset yields a large set of config-
urations that are then simulated numerically and graphi-
cally. Then—and this is the manual phase—the expert
user looks at the performance of the simulated configura-
tions as visualized, and may choose to revise the ruleset,
either in order to improve the results for the particular pro-
blem or as means for the domain expert to probe and
improve on the strategy. Then the revised ruleset is run
again. Thus, the operation mode is a loop.

The neural/symbolic sequel project described here
reflects the realization that it is feasible to fuily automate
rule revision (the ‘missing link’ in automating the loop: the
step that was still manual) and thus, provided that we have
an initial ruleset, to ensure that the entire process of fuel
allocation is virtually automated.

As previously stated, neural networks can be utilized,
when correctly designed, to learn and adapt. They thus
have the potential to serve as a general optimizer of fuel
allocation that will adapt differently to various cores and
various fuel rods available. One could design a direct neural
optimizer that will find the best allocation, like Hopfield

networks®! or Grossberg networks.? As the search space
of the allocation problem is large, those neural optimizers
will not do well; it is presently common knowledge that
neural networks do not scale well to optimization.26 We
chose rather to adapt a smaller scale setup in order to
solve the same allocation problem: we will learn and
adapt the search heuristic along with its parameters and
then apply the chosen search to calculate the preferred allo-
cation. This application generalizes well and provides good
solutions.

The method described in this section is the composition
of a O ¢ O e from Fig. 3. The ruleset at the heart of the
heuristic search is translated into a neural network, using
the NIL scheme. By the use of the symbolic search
FUELCON and the core simulator NOXER, the network
considers its performance, just as the person does, and
tunes and changes its heuristic. The mandatory part of the
rules is not to be changed. It is important to note that we still
allow the expert to interfere if he insists on doing that, and to
add or change rules by teaching hints from virtual examples,
as was suggested by Abu-Mostafa. Thus far, this does not
look necessary, but it is likely that practice will resort to that
option. Providing such an option seems anyway to be a plus
in terms of credibility when it comes to trying to convince a
human domain expert to accept the very notion of automatic
revision.

6.1 The method of adaptation

As the network governs the heuristic search, it can be
thought of as a closed-loop adaptive controller that acts in
the physical environment of the nuclear core and controls
the search (see, e.g., Wang et al®® on adaptive control). One
may wonder how we can adapt the neural network that
represents such a controller. This question is indeed more
than legitimate: a classical approach to neural network
adaptation is based on observing the input/output behaviour
of the network and training it with a training set of pairs of
input and desired output. These typical learning approaches
are called supervised learning. Our network does not have
such a setup, We do not know the exact rules or meta-
heuristic for a given nuclear core, we have to optimize
and learn it, but we cannot do it using simple examples.

What can we use for learning? We can apply the search
that is implied by the network, receive allocations and feed
back to the network a grade that describes how good the
allocation is or, equivalently, how appropriate was the strat-
egy revision enacted by the network. Using this grade, the
network makes probabilistic changes to its structure to
search for better possibilities. There are various adaptive
algorithms that can do such tasks with some level of suc-
cess. We chose the one that we found the most appropriate:
the method of reinforcement learning.

In reinforcement learning, it is common to think
explicitly of the network as a controller in an environment:
see Fig. 6. The environment provides the inputs to the
network, receives its output, and then provides the
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Fig. 6. Reinforcement learning.

reinforcement signal. This signal gives no hint of what the
right output should be, but evaluates how good the current
output is. It is therefore important to have some source of
randomness in the network so that the space of possible
outputs can be explored. The output units are thus governed
by the standard stochastic rule:

1

Prob (S, =b) = og(h;) = T T exp (26%) (N
where h; is the input net to the neuron, that is, the linear
combination of the values of the neurons and possibly the
external input.

By a standard analogy of neural network modelling,
learning by reinforcement learning can be viewed as similar
to learning by a teacher, where the output is supervised and
feedback is given. The main difference is that the error in
the output units for a given input pattern is no longer equal
to the value (DesiredOutput — TrueOutput), but rather that
the error of the output units has to be calculated in a more
subtle manner,

Assume that the score r* of the input pattern  is binary.
The desired binary output D; of the ith output neuron is then
well defined: §; for * =1 and — §; for * = — 1. The error
in the output neuron can then be easily computed by

where << S¥> is the average of the ith output unit for input
1. In our case the score value r* is not binary, but rather
may range in the continoum [0, 1j; we use the formula
proposed by Barto and Jordan:**

M =rtS,— <S>+ —-r[-8—- <S>]
From here on, the reinforcement learning algorithm corre-
sponds to classical backpropagation.

6.2 An example of rule translation

Let us exemplify a rule for network conversion: consider
two different rules (rules 5 and 8 in a ruleset from an exam-
ple we discussed in a previous paper”):

5. Don’t load a twice-burned assembly in such a position
that is adjacent to another position where there is
another twice-burned assembly, if the positions consid-
ered are comprised in rows 5 to 8 in the core.

8. If it is a once-burned assembly that is currently being
considered, then choose for it (from amongst those
positions that were not forbidden by Rules 1 to 6) that
position whose distance from the centre of the core is
minimal.

The first rule here, i.e., rule 5, is an elimination rule, It
prevents placing high-burnup assemblies adjacently to each
other, and embodies the heuristic policy of devising a so-
called checkerboard pattern in respect of burnup levels: this
policy alternates high-burnup and fresh or low-burnup
assemblies to get an even distribution. The second rule,
i.e,, rule 8, is a preference rule that is meant to prune the
space of solutions, as opposed to mandatory rules imposed
in all sessions and dictated by safety considerations. In
FUELCON, the distinction between the two kinds of rules
is incorporated at the ergonomic level, in the sense that
when using the system, and eventually when revising the
ruleset on need, the expert user knows he should not touch
the rules concerned with safety but only manipulate the
other subset of rules. Tt is ultimately immaterial whether,
in the implementation, two arrays or just one correspond to
the two subsets of rules, but separation is preferable in terms
of transparency. When it comes to automating the revision
of the subset of preference rules, the program simply needs
not touch the subset of mandatory rules. It only has to do
with the preference rules.

The input to the network includes the new assembly, 4,
which is represented as a record:

A = record of [ burnt-once,
burnt-twice,
burnup,
kind,
position,

"]
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and a position § which is represented as a record:

S = record of [ row,
column,
radius,
assembly,

]

The rules can be written as NIL functions. The function of
rule 5 receives as input the record A and the position s, and
decides whether the position contradicts the rule. The func-
tion of rule 8 receives an assembly and returns a position or
the value 0. In the following functions, we write the reserved
words of NIL in boldface and the predicates in italics. Lines
are numbered successively.

1. Function rule-5 (A, S): Boolean;
2. var i: Integer, flag: Boolean;

3. Begin

4 [ =0;

5 flag = Good-position;

6. If

7 (A.burnt-twice) A (A.burnup > 20500)
8 then

9. Repeat

10. i=i+1;

11. If

12, (neighbor(S, i) A(i.assembly.burnt-twice)
13. then

14, flag = Bad-position;

15. Until

16. (flag = Bad-position) V (p=20);
17.  rule-5 = flag

18. End;

This program carried out its task by scanning all of the
positions in the one-eighth slice of the reactor core. In 1994,
two students of Siegelmann and Nissan at Bar-Ilan Uni-
versity (Ramat-Gan, Israel) pointed out that a more efficient
solution obtains if redundancy is eliminated: their alterna-
tive version just checked adjacent positions. Needless to
say, the relevance of such programming fine points is
pervasive in software development.

1. Function rule-8 (A): Integer;
2. var i, p, v: Integer;

3. Begin
4
5

V== 00

.op=d;
6. If
7. A.burnt-once
8. then
9, For i=1 to 20 do
10. If
1. rule (A4, DArules(4, DArules (A, Dy(A, DA
12. rules (A, i) A ruleg (A, D) A (i.radius < v)
13. then
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14, p=1

15. y = [.radius;
16. rule-8=p

17. End;

Each rule can be translated into either a simple feed-
forward network that tests the 20 positions simultaneously
or into a recurrent network that tests them serially. The first
implementation requires more hardware but is fast and
straightforward. The second one is cheaper in terms of hard-
ware, and it scales to any number of positions. This tradeoff
of hardware and time is to be decided upon, depending on
the particular application at hand.

To demonstrate, we write down the dynamic update of the
neurons in a recurrent implementation of rule 5. The trans-
lation of the second function is similar, but care has to be
taken in the function calls to the functions rule; up to ruleg.
There will be a neuron for each variable and a temporary
variable, as well as for the distributed representation of the
program counter (i.e., line number). The function includes
the variables / and flag, as well as the rule 5 itself. In
addition, each expression implies an expression variable
(and possibly some temporary variables as well). The
program counters are pc; to pcg.

¢ The variables:

1. The variable i is changed in lines 4 and 10. We can
write its substitutions in the general formula of

i=0-pcy+ (i +1)-pcig +i(l — pey — pejg)
2. The function variable rule-5 = flag-pc,;.
o The expression variables:

3. The expression of line 7 requires two temporary
variables:

vy = o(pcy + A.burnt-twice -+ v 1)

where v; | tests whether the burnup is high and will be set
with program counter 6.
4. The Boolean expressions of lines 12 and 16 are
similar.

o The program counters: Each program counter
(between 1 and 18) is associated with a neuron,
The update of the counters decides the flow control.
As the program is parallel, a few counters may take
true values simultaneously. The update equations of
the program counter neurons are given by:

pc; =pc; - for

i=(2,3,4,5 6,79 11, 12, 14, 15, 16, 18},
pcg =o(pcy + v, — 1)
peio = 0(PCy + Vigop — 1), Vigop = 9(PC16 — Vi6)
peiz=0(pcz +viz — 1)
pei7 =0o(pcig+vig — 1)
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The resulting network is the cyclic interconnection
describing these equations,

7 GENETIC ALGORITHMS AS AN ALTERNATIVE
FOR GENERATING RELOAD CONFIGURATIONS

In November 1996, Jun Zhao successfully discussed at the
University of Greenwich a doctoral dissertation on
FUELGEN.” This project, supervised in loco by Brian
Knight, Ephraim Nissan and Alan Soper and, from
abroad, by Alex Galperin (with Eve Siegelmann also
consulting), consists of a remake of FUELCON made by
resorting to genetic algorithms. Its output is simulated by
resorting to NOXER. Results were obtained, for given case
studies, that to our knowledge are better than the results
published in the literature, using any method. FUELGEN
will be described in separate papers.

Let it suffice, here, to point out that, a posteriori, it can be
seen that the incorporation of intelligent technologies para-
digms within the FUELCON umbrella project reftects the
successive emergence of expert systems, then neural net-
works, then genetic algorithms. Tt is because of what they
are best at, that neural networks have been positioned in the
project in the function we have been considering in this
paper. Genetic algorithms, instead, are very appealing for
the reload pattern generation function. An anonymous
referee appears to think the same when stating: ‘‘It seems
to me that the logical way to solve this problem is by GAs,”

As an alternative to the generation of allocations by
means of a rule-based approach, FUELGEN generates
allocations via genetic algorithms, The use of genetic algo-
rithms for the generation of fuel positioning in the reactor
core fits the paradigm d O f according to Fig. 3. In FUEL-
GEN, there is no use for any heuristic rule, any intervention
of human reasoning within the framework we have been
discussing in this paper, or any problem modelling. Alloca-
tions are generated—first randomly, and then by a sequence
of crossover and mutation steps. The fitness of the allocation
is measured for all allocations considered, and the algorithm
probabilistically biases towards better configurations by
means of reproduction.

Care is taken to prevent the algorithm from selecting such
allocations that are forbidden by the safety-related manda-
tory rules. (Of course, safety is never entrusted to that level
of processing. After generating the configurations, simula-
tion prunes out unsafe solutions; moreover, at an actual
plant one more level of simulation is to be carried out,
with standard software as mandated by regulations binding
by law. On safety, see e.g. Gittus e al.,*® which discusses
safety characteristics, as understood, of fuel and reactors in
the European Community.)

8 CONCLUDING REMARKS

Fuel reload design is a crucial task in the operation and
economics of nuclear power plants, We described FUEL-

CON, an expert system that automates reload design. Then
we discussed one of the sequel projects that augments the
expert system with a neural component. We integrate neural
processing into the architecture for the purposes of automat-
ing the revision of the ruleset that embodies fuel reload
strategies.

With FUELCON, it is not just the discovery of fuel
allocation patterns that is carried out. FUELCON also
enables the human expert to explore or discover the
potential of new strategies, whereas the neural component
reconceptualizes in terms of automation that same stage of
the operation mode of FUELCON. We briefly announced
the completion of FUELGEN, a tool based on genetic
algorithms which fits within the FUELCON umbrella pro-
ject. The architectural alternatives within this umbrella
project have been described, in this paper, in terms of an
AND/OR tree.
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